
 

Preamble 
This document describes the Intellectual Property to lies at the core of each Edge Intelligence server 

and which enables each edge server to run autonomously while providing excellent performance 

against large data volumes without prior design.  

Hardware Efficiency 
Modern hardware has key performance characteristics that the Intellectual Property aims to both 

exploit and mitigate. Firstly, data transfers from storage to memory and from memory to CPU cache 

have fast transfer rates while the latency to initiate each transfer is relatively long compared to the 

length of a CPU cycle.  

The primary goal of the Intellectual Property is to maximise the amount of relevant data contained 

within each transfer and minimise the overall number of transfers required to service a query. This 

allows for larger transfer sizes which can fully exploit fast transfer rates and also reduce the effective 

overhead of transfer latency. Good spatial locality optimises the amount of relevant data contained 

within a transfer. 

Modern CPUs, operating systems and file systems routinely attempt to mitigate latency through 

read-ahead strategies which speculatively assume that data which immediately follows a transfer 

along the data address dimension will be similarly relevant. Data with poor spatial locality invalidates 

that assumption; while data with good spatial locality assists a read-ahead strategy. 

The trend in contemporary hardware has been to increase the number of CPU cores rather than 

increase CPU speed – partially because increasing CPU speeds largely makes them more inefficient 

because of the time spent waiting during transfer latencies. Therefore, in addition to good spatial 

locality, data structures also need to be predominantly linear and homogenous to be able to exploit 

multiple core architectures.  

Now, contrast the requirements of modern hardware with a conventional hierarchical index 

structure, such as a B-Tree index, which typically exhibit poor spatial-locality. For example, a block 

within a B-Tree may contain thousands of key entries, yet only one of those entries may be relevant 

to the query at hand and therefore the block transfer, and its attendant latency cost, typically 

returns less than 1% of useful data. Moreover, any read-ahead attempt is very unlikely to return the 

next block actually required to continue navigation through the tree structure and therefore this 

inefficiency is repeated at each level of the tree visited – even if it is cached in memory. Further still, 

a hierarchical index structure will defeat any attempt to employ multiple cores during a single 

navigation because the nature of a tree algorithm is necessarily sequential. The storage structures 

defined in the Intellectual Property avoid the inefficiencies of hierarchical indexing experienced 

during both index writes and reads. 

Access Model 
The Intellectual Property is designed to be universal and independent of any particular data model 

such as the relational model and it defines a generic access model which is functionally complete for 

the relational model, but does not assume it. The access model provides a fundamental set of 

operators which function on collections of scalar elements and supports operations such adding and 

deleting a collection instance; adding and deleting an element to an existing collection instance; 



 

retrieving collection instances or element aggregates by arbitrary element predicate expressions; as 

well as operations for managing transaction state.   

The concept of a collection is universal to virtually all data models whether they be tuples, vectors, 

objects or documents. However, the internal structure of a real-world collection can vary 

enormously, while the access model in the Intellectual Property only provides for a collection which 

is a structure-free bag of scalar elements. The arbitrary structure of a collection is resolved by 

decomposing each structure into its scalar components and serialising the structure into the 

metadata associated with each scalar element. For example, a geometric position P with a 

coordinate pair (X,Y) may decompose into two scalar numbers with meta paths P/X and P/Y.   

The access model provides the concept of intent which recognises how a scalar element is used 

rather than its data type. For example, an element may be involved in an equivalence expression 

regardless of whether it is a Boolean, number, time or textual value; whereas a textual string can be 

tested for the presence of a contained property such as a word while a number data type cannot 

because it has to be interpreted in whole.  

An element may have multiple intents and each intent determines which operators within the access 

model are applicable to it. Part of the Intellectual Property is concerned with the mapping from a 

relational schema to collections, elements, intents and operators.          

Storage Structures 
Each intent within the access model has an associated family of fragments which provide optimal 

spatial locality for the operators associated with that intent. In each fragment family there will be 

many thousands of fragments per intent per element; whereby each fragment supports a specific 

operator and operand subset and each element instance will be denoted in multiple fragments. 

Therefore for a single collection path, there will typically be many millions of individual fragments 

supporting all combinations of operators and operands against all element paths.  

Any data stored in a fragment is typically only part of an element but is always just sufficient to 

support the operator associated with the fragment family. Indeed, while a fragment will always 

guarantee 100% recall (will return all relevant instances) it often relaxes precision such that a 

superset of the relevant data may be returned. However, by combining the results from other 

fragment families and/or filtering of the result set, the final result is always 100% precise. The 

relaxation of precision allows for better spatial locality, more efficient compression and greater 

throughput to provide a more efficient fragment structure overall.  

Fragments are compressed using fragment family specific RLE methods which allow fragment data to 

be interpreted as read, avoiding any prior inflation, to optimise CPU cache efficiencies.     

In all cases, fragments are homogenous within their own family and are linear append-only 

structures. Updates are handled by tombstoning an element instance and appending a new version, 

therefore an element instance may appear multiple times with a single fragment. For this reason, 

fragments are read in reverse time order to facilitate version resolution. 

Every fragment is divided into common time-frame boundaries that permit query correlation across 

fragments and fragment families, allow query navigation to switch between fragments as 

appropriate and also to permit multiple cores to read a single fragment without contention. 

Statistics are also maintained about every frame and super set of frames for every fragment family 

to permit the rapid elimination of frames irrelevant to any particular operand set.  



 

The database is divided into transactional heaps of active transactions and fragments of committed 

data – where a heap is simply a journal of transactions with transactional content. Committed heap 

data is migrated to fragment structures using multiple cores when there is sufficient heap data to 

amortize the cost of appending to multiple fragments; and heaps are dropped once they have been 

successfully migrated. Queries will read heaps first and resolve any transaction context prior to 

traversing fragments containing committed data.  

A commit operation simply requires pending transaction data to be appended to an active heap and 

it can participate in a group commit cycle to minimise the number of write transfers, minimise 

storage synchronisation time and optimise commit throughput. 

Joins 
The access model supports equi-joins, semi-joins and cross-joins through a bind operator. This 

operator is able to exploit a fragment family which effectively provides pre-calculated hash buckets 

for each side of a hash-join operation. The knowledge of which hash buckets are relevant to each 

side of the join allow hash buckets to be immediately eliminated and enables narrow joins to 

perform like nested-loop joins; while wide-joins perform much more efficiently than conventional 

hash-joins because the hash buckets have always been pre-computed.  

 


