

Edge Intelligence User Guide August 2017 1

Edge Intelligence
User Guide

Edge Intelligence User Guide August 2017 2

Contents
What is the Edge Intelligence Platform?... 5

What is an Edge Server? ... 6

Architecture .. 7

Vanilla System ... 7

Building a Network .. 8

User Interface ... 9

Identifiers .. 9

Messages ... 10

Managing Users .. 11

Managing Networks .. 14

Network Topology ... 15

Changing Network Topology ... 17

Managing Databases ... 19

Managing Schemas ... 20

Managing Tables ... 21

Managing Constraints ... 24

Primary Key Constraints .. 24

Unique Key Constraints ... 25

Foreign Key Constraints .. 25

Distribution Constraints .. 26

Managing Views .. 27

Managing Functions .. 28

Managing Sequences .. 30

Managing Interfaces ... 31

Message State ... 32

Adaptors .. 33

JSON Adaptor .. 33

SV Adaptor .. 34

Format Masks .. 35

Additional Adaptors .. 38

Edge Intelligence User Guide August 2017 3

Ports .. 41

Sources .. 42

Agents ... 43

Standard Agents .. 45

Input Agent ... 45

File Streamer ... 46

File Transactions ... 47

Managing Data .. 48

Collecting Data .. 50

Migrating Data .. 50

Performing Queries ... 51

Join Queries ... 51

Query Goals ... 53

Query Syntax ... 54

Managing Jobs .. 55

Managing Resources ... 56

Security ... 58

Server Security .. 58

Object Security .. 59

Auditing ... 61

Metadata Views .. 62

Network Views .. 62

star$adaptors .. 62

star$audit .. 62

star$columns ... 63

star$configuration... 63

star$constraints .. 63

star$functions ... 63

star$jobs .. 64

star$locks .. 64

star$nodes .. 64

star$ports .. 65

star$schemas .. 65

star$sequences ... 65

star$sources .. 65

star$tables .. 65

Edge Intelligence User Guide August 2017 4

star$trace .. 66

star$views ... 66

Administration Views .. 67

star$audit .. 67

star$jobs .. 67

star$networks ... 67

star$roles .. 67

star$users .. 68

Example of Deploying a Network .. 69

Known Issues ... 72

Distribution constraints .. 72

Creating adaptor functions ... 72

Forthcoming Features ... 72

Bounded Schemas ... 72

Explicit Purge Criteria .. 72

Edge Intelligence 7.0 Documentation

Copyright © 2016-2017 Edge Intelligence Software Inc. All rights reserved.

This document pertains to software from Edge Intelligence Inc.

Information in this document is subject to change without notice. The software described herein is
furnished under a license agreement, and it may be used or copied only in accordance with the
terms of that agreement. No part of this publication may be reproduced, transmitted, or translated
in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without the prior
written permission of Edge Intelligence Software Inc.

Edge Intelligence Software Inc. makes no warranty of any kind with respect to the completeness or
accuracy of this document.

Edge Intelligence User Guide August 2017 5

What is the Edge Intelligence Platform?
The Edge Intelligence platform orchestrates a highly geographically distributed network of Edge

Intelligence stores to enable 'single pane of glass' control and query access across the entire

network.

The platform enables data to be retained at the edge of a network to overcome the issues that arise

with shipping data to a central location. Retaining data at the edge has a number of virtues,

including:

○ Overcoming the bandwidth limitations of wide-area networks and the Internet.

○ Avoiding the cost of shipping terabytes of data across networks.

○ Enabling exhaustive data retention and avoiding loss of data from enforced filtering.

○ Increased reliability and reduced latency by enabling autonomous data processing at the

edge of the network.

○ Avoiding the movement of sensitive data over public networks.

○ Enables geo-political movement restrictions to be respected.

The Edge Intelligence Platform provides the infrastructure to enable hybrid clouds and

geographically distributed data lakes for situations where location enforcement and/or network

bandwidth limitations prevent the movement of bulk data over public networks.

The platform provides a number of key features in this architecture:

○ Provides a central management console for an entire network.

○ Changes are made once and are automatically rolled-out and autonomously implemented

across a network.

○ Agile database schemas that respond to evolving requirements without requiring any prior

knowledge of those requirements to provide a future proof solution.

○ Autonomous edge servers that perform at network speed and deliver excellent response

times to arbitrary queries.

○ Distributed resources can be provisioned, deployed and controlled at a distance.

○ Distributed operations can be monitored and controlled at a distance.

○ Networks can be arranged to provide high-availability and resilience against both network

connectivity and hardware failures.

○ Networks can be arranged into arbitrary regional hierarchies and queries applied to the

network as a whole and to arbitrary areas of the network.

○ Query performance is optimised by distributing queries in parallel across the network and

pushing query processing to the data at the edge of the network.

○ Data transit is minimised by shipping only queries and their results over the network.

○ In-flight data is protected from exposure through encryption.

○ Data is secured through a role based security framework which restricts who can see which

data and where.

The Edge Intelligence Platform presents an industry standard SQL interface over ODBC or JDBC

protocols using a standard PostgreSQL driver. Hence the platform is compatible with most standard

query clients and business intelligence tools.

Edge Intelligence User Guide August 2017 6

What is an Edge Server?
An edge server operates at the edge of the network to collect exhaustive detailed data and retain it

indefinitely while providing fast response to arbitrary queries. An Edge Intelligence server is capable

of:

○ Design-free operation

○ Autonomous operation in a lights-out environment

○ Data acquisition at network speeds

○ Excellent response times to arbitrary, unplanned and unforeseen queries

○ Retention of very large data volumes

○ Exceptional hardware efficiency

A key characteristic of an Edge Intelligence server is its ability to rapidly respond to arbitrary queries
without requiring any prior design for performance. Tables are defined as standard relational tables,
but there is no need to design or implement any indexing or partitioning structures to achieve good
performance – regardless of the nature of the queries submitted - from granular forensic queries to
extensive analytical queries.

This characteristic removes any need to tune or optimise an edge server and allows the server to
operate autonomously. This is important for edge servers operating at the edge of a network where
a widely distributed deployment makes close supervision and regular intervention in the operation
of each and every server impractical.

An Edge Intelligence server is exceptionally hardware efficient and is able to deliver excellent
performance from a small number of high-capacity high-latency disks (8TB HDDs for example), which
allow a single server to readily manage many terabytes of data and acquire that data at rates of
hundreds of thousands of messages per second whilst retaining that data for many months or years.

Edge Intelligence User Guide August 2017 7

Architecture
An installation of the Edge Intelligent platform consists of three catalog servers that provide the

meta-data repository and the portal for access to a network of edge servers.

All of the catalog servers typically contain identical data. There are three catalog servers to provide

high-availability and operations are possible while any two of the catalog servers are up and

available where users can connect to any one of the currently available catalog servers to perform

operations or queries.

An important point to understand is that any number of independent networks can be created,

managed and accessed from the same set of catalog servers. The catalog servers simply provide a

central point of control and access for one or more networks.

Each network comprises a population of geo-distributed edge servers – all of which are managed,

operated and queried through a catalog server. A single edge server can also be shared between

multiple networks, if required.

Transparently to users, the platform will replicate changes made by the users between the catalog

servers and propagate the changes to edge servers as required. The majority of propagation and

synchronization work happens asynchronously so that changes can be performed while parts of the

network are unavailable. Yet, from a user's perspective all changes are immediate and appear

consistent across an entire network.

To guarantee consistency, any attempt to perform operations and queries when only one catalog

server is available will cause an exception to be raised.

Vanilla System
Immediately following a fresh installation, there will only exist three catalog servers, no edge servers

and no networks. On each catalog server, a star$administration database and a star$administrator

user will exist.

The star$administration database is used to perform the following operations:

○ Create/drop networks

○ Create/drop roles

○ Create/drop users and alter their login credentials

Users with login credentials are able to connect to any of the networks, but their access rights will

likely vary between each of the networks.

Edge Intelligence User Guide August 2017 8

Building a Network
The steps involved in building a network are covered in detail in the remainder of this document, but

are summarized here where all of the following steps are performed from a catalog server

connection.

○ Define the names and credentials of users who will have access to the system.

○ Remotely provision new edge servers, as and when required.

○ Create one or more networks.

○ In each network:

○ Create nodes to model the topology of the network

○ Create database objects to model the schema of the network

○ Create ports and sources to map from input message formats to relational tables

○ Define global reference data

A worked example of creating a network, node and tables is provided at the back of this document.

Edge Intelligence User Guide August 2017 9

User Interface
The user interface is API based for easy dev-ops integration and scripting and within a network, an

operation is performed via a function call in simple SQL statement.

For example, to create a new user, the administration user can connect to the star$administration

database and use the following command:

SELECT create_user('joe');

Where joe is a function argument identifying the name of the new user to be created.

Similarly, the following command gives joe login access and sets his password for connecting to the

server.

SELECT alter_user('joe', true, 'password123');

Some functions permit optional arguments and where an argument is not supplied, a NULL

argument value should be used. For example, to disable logins for user joe without changing his

password, you would use the following command.

SELECT alter_user('joe', false, NULL);

Most of the command functions return a void result to indicate a success and will raise an exception

if there is a problem.

For example, if there is an attempt to create another user with the name joe, we would see

SELECT create_user('joe');

ERROR: role "joe" already exists

These functions can be called programmatically from an application via a language interface (for

example JDBC) or manually from a SQL command console, such as josql.

Using josql you can obtain a list of command functions by using the \df command.

Identifiers
The names used for objects such as networks, nodes and tables are required to observe the

following rules:

○ They may contain letters, numbers and underscores only.

○ They must begin with a letter or underscore.

Examples of valid object names include

○ myTable

○ table1

○ table_1

○ _table1

Edge Intelligence User Guide August 2017 10

Examples of invalid object names include

○ my.table

○ "my table"

○ 0_table

○ table$

Note that database object names (such as table names) are typically case insensitive while networks

and nodes are not. If uncertain, it is best to assume that an identifier is case sensitive.

Note that some predefined system identifiers (such as standard user names and function

argument names) are prefixed with "star$" (star$administration for example) while user

defined identifiers are prohibited from containing the dollar character.

Messages
Users can control the severity level of messages they receive from functions they call by using the

set_messages() function. This function accepts one of the following severity levels:

○ INFO. Messages with a severity level of information or above are output.

○ WARNING. Messages with a severity level of warning or above are output.

○ ERROR. Messages with a severity level of error or above are output.

Information level messages can be ignored while messages with a severity level of WARNING or

above require the attention of the user.

When a session is started, it is recommended that the following is used to avoid the output of

informational messages:

SELECT set_messages('warning') ;

Edge Intelligence User Guide August 2017 11

Managing Users
After installation a single user called star$administrator exists for performing administrative tasks

such as managing users and roles.

Users can be created and dropped as needed and their login rights and credentials can be altered as

and when required. When a new user is created, they have no login rights and no password set so it

is also necessary to alter the user to enable them to connect to a catalog server.

After installation, the following standard users are defined.

User Description

star$administrator Administration user for managing users, roles and networks

star$source Restricted user for connections from data collection agents

star$ Proxy user for remote connections

The following functions are used to manage users:

Function Description Arguments

create_user Creates a new user user$ - name of the user to be created

drop_user Drops an existing user user$ - name of user to be dropped

alter_user Changes the login right of
the user and/or their
authentication password

user$ - name of user to be altered
login$ - boolean setting for enabling login (optional)
password$ - optional password to be set (optional)

Disabling login for a user prevents that user from connection to any of the catalog servers.

Note that the alter_user function is the only function that requires all of the catalog servers to

be available when the function is called. If any one of the catalog servers is unavailable, the

function will return an error.

Edge Intelligence User Guide August 2017 12

There is a star$users view which provides a list of all known users:

Column Description

user_name Name of the user

login Indicates if the user has login enabled

Users can have roles which bestow permissions for performing certain operations and certain

queries.

After installation, the following standard roles are defined.

Role Description

star$administrate Administrate networks, users and roles

star$grant Grant or revoke roles to and from users and objects

star$network Manage network topology

star$define Define database objects (DDL)

star$modify Modify database objects (DML)

star$query Perform queries

star$append Append data to local tables

star$purge Purge data from local tables

A standard user must be granted one or more of the above roles to perform the operations

associated with those roles. For example, a user would be granted the star$query role to allow them

to perform queries.

The star$administrator user is a super user who has access to all of the roles above and can be used

to configure the users, roles and networks required immediately after installation. Thereafter, it is

advisable to disable login access for the star$administrator to prevent any wide ranging super user

access.

Additional roles can also be created for the purpose of controlling which data is visible to particular

users. This is discussed in greater detail in the security section of this document, but for now it is

important to understand that new roles can be created and that roles can be granted or revoked

from users to control their data access rights.

The following functions are used to manage roles:

Function Description Arguments

create_role Creates a new role role$ - name of the role to be created

drop_role Drops an existing role user$ - name of role to be dropped

grant_user Grants a user access to
a role

user$ - name of user to be granted a role
role$ - name of role to be granted

revoke_user Revokes access to a role
from a user

user$ - name of user to revoke role from
role$ - name of role to be revoked

Edge Intelligence User Guide August 2017 13

The star$roles view provides a list of known roles:

Column Description

role_name Name of the role

There is also a star$roles function which provides a list of roles for a given user and returns one row

per role. This function can be used as follows:

select * from public.star$roles(<user>);

Where <user> is the name of the user to get the roles for. To use this function you must be a

superuser or be a member of the star$grant role.

Edge Intelligence User Guide August 2017 14

Managing Networks
The Edge Intelligence platform can manage multiple networks and these can be created and

dropped as required. Each network operates independently and multiple networks are only used

where the physical separation of discrete data sets is required. In particular, note that:

o Multiple networks must be managed separately.

o Queries can only operate within the context of one network at a time.

o Data cannot be shared between multiple networks.

Networks are created and dropped by connecting to the star$administration database and using the

following functions:

Function Description Argumentsdrop

create_network Creates a new
network

network$ - name of the network to be created
description$ - description of the network (optional)

drop_network Drops an existing
network

network$ - name of network to be dropped
cascade$ - indicates if dependent nodes should be
dropped

alter_network Changes the
description of a
network

network$ - name of the network to be altered
description$ - new description of the network (optional)

The cascade option of the drop_network function allows all of the nodes and databases associated

with a network to be dropped in a single command.

Note that an attempt to use drop_network without the cascade option will fail if there are

any dependent nodes in the network.

There is a star$networks view in the star$administration database which provides a list of all known

networks:

Column Description

name Name of the network

description Description of the network

Following installation, no networks will exist and at least one network will need to be created as

described above.

Edge Intelligence User Guide August 2017 15

Network Topology
A network comprises of one or more edge nodes which denote the edge points of the network.

Edge nodes can be grouped under area nodes for the purposes of management, visibility and query

access. Area nodes can also be grouped under other area nodes to create hierarchies of nodes. For

example, a network of nodes may be arranged as:

The topology and shape of a network is completely arbitrary except for the following rules:

o Each node can only have at most one parent node

o A parent node must be an area node (not an edge node).

Each node is given a unique name and it is possible to control and query regions of the network by

qualifying operations with a node name.

For example, a simple topology could be named as follows.

Queries can be submitted to any of the nodes in this topology to provide a view of all of the edge

nodes at or under the queried node. For example, a query submitted to the US node will provide a

view of the entire network; while a query submitted to the East node provides a combined view of

the NE and SE edge nodes; and a query can also be submitted to an individual edge node.

Similarly, node specific operations can be targeted at regions of the network as well as individual

edge nodes.

To provide high-availability and resilience to network and hardware failures, data is collected and

stored in one or more physical servers connected beneath each edge node. These are represented

as instance nodes where each instance node represents a replica of the data available at the edge

Edge Intelligence User Guide August 2017 16

node. For example, the data for an edge node may be replicated across two instance nodes as

illustrated below.

The data stored on the instance nodes under an edge node is considered to be identical and,

typically, each instance node will be hosted on a different physical server to the other instance

nodes under the same edge node. A query reaching an edge node will use one of the currently

available instance nodes under that edge point - to afford high-availability for the query.

Each edge node can have any number of instance nodes beneath it - but each instance node can only

be attached directly to one edge node. In particular, instance nodes cannot be attached to each

other and cannot be attached to area nodes.

The following summarizes the rules governing network topology:

○ A node is one of an area node, edge node or instance node.

○ Each node can only be the child of one parent node at most.

○ An instance node can only be the child of an edge node.

○ An edge node can only be the child of an area node.

○ An area node can only be the child of another area node.

Nodes are managed by connecting to the network database and using the following functions:

Function Description Arguments

create_node Creates a new node node$ - name of the node to be created
description$ - description of the node (optional)
type$ - type of node (A,E,I)
host$ - server host address for an instance node
address$ - address information (optional)
location$ - location information (optional)
latitude$ - latitude of the node (optional)
longitude$ - longitude of the node (optional)

drop_node Drops an existing
node

node$ - name of node to be dropped

alter_node Changes the details
for a node

node$ - name of the node to be altered
name$ - new name for the node (optional)
description$ - new description of the node (optional)
address$ - new address information (optional)
location$ - new location information (optional)
latitude$ - new latitude of the node (optional)
longitude$ - new longitude of the node (optional)

attach_node Attaches a node to a
parent node

node$ - name of node to be attached
parent$ - name of parent node to attach to

detach_node Detaches a node
from its parent node

node$ - name of node to be detached

Edge Intelligence User Guide August 2017 17

set_node Sets an instance
node as readable
and/or writable

node$ - name of instance node to be set
readable$ - readable state to be set (optional)
writable$ - writable state to be set (optional)

grant_node Grants query access
for a role to a node

node$ - name of node to grant access to
role$ - name of role to be granted access

revoke_node Revokes query
access for a role
from a node

node$ - name of node to revoke access from
role$ - name of role to be revoked access

Networks can be built by defining the constituent nodes in any order and by attaching defined nodes

in any order. Moreover, existing networks can be re-shaped by detaching and re-attaching nodes as

required.

Changing Network Topology

The topology of a network can be any hierarchical shape and can be changed at any time by

detaching and/or attaching child nodes to parent nodes. However, the following should be borne in

mind:

○ Area nodes can be detached and attached to area nodes at any time; similarly, edge nodes

can also be detached and attached to area nodes at any time.

○ An instance node can only receive data and be queried if it is attached to an edge node.

○ Detaching an instance node from an edge node effectively drops the data from that instance

node. Hence detaching the instance node from an edge node which only has one instance

node attached will drop all of the data collected at that edge.

○ An instance node can only be attached to an edge node if it is not already attached.

○ After attaching an instance node to an edge node it will synchronize its data with any sibling

instance nodes under the same edge node.

There is a star$nodes view in a network database which provides the following information for the

nodes in the network:

Column Description

id Unique node identity

name Name of the node

parent Name of the parent node

description Description of the node

type Node type. A, E or I for area, edge or instance node respectively

host The server host address for an instance node

address Address information for the node

location Location information for the node

latitude Latitude of the node

longitude Longitude of the node

readable Indicates if an instance node is currently readable

writable Indicates if an instance node is currently writable

Edge Intelligence User Guide August 2017 18

There is a star$topology function in a network database which provides the following topology

information about nodes in the network below a given starting node:

Column Description

depth Depth of the node relative to the starting node

path Node path from the starting node to this node

node_id Identity of this node

parent_id Identity of parent node

name Name of this node

type Node type. A, E or I for area, edge or instance node respectively

host The server host address for an instance node

readable Indicates if an instance node is currently readable

writable Indicates if an instance node is currently writable

address Address information for the node

latitude Latitude of the node

longitude Longitude of the node

location Location information for the node

description Description of the node

This function requires a single node parameter which identifies the starting node and the function

returns information for every node at and below the starting node.

The depth column can be used with the rpad() function to indent the node name based on the depth

of the node; and the path column can be used to order the results in depth first order. For example:

SELECT rpad(' ',depth)||name AS name, type, description

FROM star$topology('US')

ORDER BY path ASC;

Might return something like the following, which provides a visual outline of the network hierarchy:

 name | type | description

--------+------+-------------

 US | A | United States

 West | E | Western edge

 NW | I | Northwest instance

 SW | I | Southwest instance

 East | E | Eastern edge

 NE | I | Northeast instance

 SE | I | Southeast instance

Edge Intelligence User Guide August 2017 19

Managing Databases
Each network presents a relational data model in which data is stored in tables of columns and rows

and where the definition of any database object, such as table, can be changed dynamically at any

time.

The definition of database objects is managed independently for each network; but within a single

network, object definition is common across all nodes and is managed centrally and singularly from a

connection to a catalog server. For example, creating a table in a network simply involves creating

the table once and the existence and definition of that table is automatically propagated out to all of

the instance nodes in the network.

The following objects can be created, altered or dropped in a network:

○ Schema (namespace for database objects).

○ Table.

○ Constraint (primary key, unique key and foreign key constraints)

○ View.

○ Function.

○ Sequence.

Note that there are no features provided to manage indexes, partitioning or sharding

because the edge stores do not require them - regardless of the volume data being

managed.

The following sections describe the management operations possible for each object type.

Edge Intelligence User Guide August 2017 20

Managing Schemas
A schema is a namespace for other database objects and allows the same object name to be used in

different schemas without conflict; for example, schemas schema1 and schema2 can both contain a

table named mytable. A user can access objects in any of the schemas in the network he is

connected to, if he has privileges to do so.

Schemas are typically used to organize database objects into logical groups to make them more

manageable.

Schemas are managed by connecting to the network and using the following functions:

Function Description Arguments

create_schema Creates a new
schema

schema$ - name of the schema to be created

drop_schema Drops an existing
schema

schema$ - name of schema to be dropped
cascade$ - indicates if drop cascades to dependent objects.

rename_schema Renames an
existing schema

old$ - current name of the schema
new$ - new name for the schema

Naturally, if you attempt to create a schema using the name of an existing schema an exception will

be raised; and similarly if you attempt to drop or rename a non-existent schema.

There is always a 'public' schema in which objects are created by default unless otherwise specified.

Objects can be qualified by their schema name by prepending the object name with the schema

name and a dot. For example, to refer to the table mytable in the schema myschema, you can use

myschema.mytable to qualify it. If you omit a schema qualification, the object is assumed to exist in

the public schema - that is, 'mytable' implicitly refers to 'public.mytable'.

Edge Intelligence User Guide August 2017 21

Managing Tables
A table is used to store data and is defined with one or more columns. Each column has a data type

and a number of optional constraints associated with it, such as whether a column value is allowed

to be null (undefined).

Each table has a scope which specifies how the data within a table is distributed across the network.

Currently, the scope of a table can be either:

○ Local. The data differs between edge nodes in the network. This data is collected, stored and

replicated between instance nodes under an edge node and this data is effectively

partitioned by edge node.

○ Global. This data is common across the network. This data is created centrally on the catalog

servers and replicated across all instance nodes such that every instance node contains a

copy of the same global data.

○ Central. This data only exists on the catalog servers and is never propagated to any instance

node.

The scope of a table is set when a table is created and the scope parameter is a letter which may be

one of the following:

○ L - local scope

○ G - global scope

○ C - central scope

Note that the scope of a table cannot be changed after it has been created.

The mutability of data varies depending on the scope of a table

○ Local. Data in local tables is collected at the edge and treated as immutable fact data that

can only be appended to a table - where rows cannot be updated or individually deleted.

○ Global and Central. Data in non-local tables is managed centrally and treated as mutable so

that rows can be inserted, updated and deleted at will.

The life-cycle of data is also managed differently depending on the scope of the table.

○ Local. Local tables can be purged such that data inserted into a local table before a specified

receipt date/time may be dropped. Note that this an operation used to reclaim storage from

local tables and does not guarantee to drop any specific rows - it only guarantees to retain

data received at or after the given purge date/time.

○ Global and Central. Non-local tables can be truncated such that all data in a table is

guaranteed to be removed.

Note that local tables cannot be truncated because local tables collect data independently

at the edge of the network and therefore the effect of a central truncation operation

would depend on the timing of truncation request relative to any data collection

processing and also on the network connectivity at the time of the request. This would

cause the effect of a truncation operation on a local table to be non-deterministic.

Edge Intelligence User Guide August 2017 22

Tables are managed by connecting to the network and using the following functions:

Function Description Arguments

create_table Creates a new table table$ - name of the table to be created
columns$ - columns specification for the table
scope$ - scope of the table (G or L (or C in future))

drop_table Drops an existing
table

table$ - name of table to be dropped
cascade$ - indicates if drop cascades to dependent objects.

grant_table Grants a role query
access to a table

table$ - name of table to grant access to
role$ - name of role to grant query access to

purge_table Purges data from a
local table

table$ - name of table to be purged
datetime$ - timestamp to purge up to

rename_table Renames an existing
table

old$ - current name of the table
new$ - new name for the table

revoke_table Revokes query
access to a table
from a role

table$ - name of table to revoke access from
role$ - name of role to revoke query access from

truncate_table Truncates a non-
local table

table$ - name of table to be truncated

In each of the above functions, the name of a table can be optionally qualified with a schema name.

If not qualified, the public schema is assumed.

Naturally, if you attempt to create a table using the name of an existing table an exception will be

raised; and similarly if you attempt to drop or rename a non-existent table.

The column$ parameter for the create_table function is a comma separated list of column

specifications as described below.

An example of creating a table is:

SELECT create_table('my_table',

 'column_1 INTEGER, column_2 TEXT',

 'G');

Which creates a global table called my_table with two columns:called column_1 and column_2 of

type integer and text respectively.

A column can also be added, dropped or renamed in an existing table using the following functions:

Function Description Arguments

create_column Creates a new
column

table$ - name of the table to create the column in
column$ - column specification

drop_column Drops an
existing column

table$ - name of table to drop the column from
column$ - name of the column to be dropped
cascade$ - indicates if drop cascades to dependent objects.

rename_column Renames an
existing column

table$ - name of table to rename column in
old$ - current name of the column
new$ - new name for the column

Edge Intelligence User Guide August 2017 23

A column specification takes the form:

<name> <type> [[[NOT] NULL] [CHECK (<check>)] [DEFAULT <default>]]

where:

 <name> is the name of the column

 <type> is the datatype of the column

 <check> is a predicate for checking the value of the column

 <default> is a default value for populating a column

For example:

SELECT create_column('my_table','new_column INTEGER NULL CHECK(extra>0)');

Creates a new column in my_table called new_column of type integer with a constraint that

requires the new column to contain positive integers.

Edge Intelligence User Guide August 2017 24

Managing Constraints
Constraints can be defined for tables to enforce data integrity. The constraints that can be applied

vary by table scope:

○ Global and Central. Primary key, unique key and foreign key constraints can be defined for

non-local tables such that any attempt to insert, update or delete data which might violate a

constraint raises an exception.

○ Local. The data being collected at the edge of the network is factual event data and is never

rejected or discarded - therefore the constraints described above cannot be applied to a

local table. However, a distribution constraint can be applied to local tables which is used to

enforce a join condition between local tables involved in a join query. If there is no

distribution constraint defined for a local table - it cannot be joined with another local table.

Primary Key Constraints

A primary key constraint defines a combination of one or more columns that define a unique key for

every row. If there is an attempt to insert or update a row which would have the same key as

another existing row, the operation raises an exception.

Primary key constraints can be defined for global and central tables - but only one primary key

constraint can be defined per table.

Primary key constraints are managed by connecting to the network and using the following

functions:

Function Description Arguments

create_primary_constraint Creates a
primary key
constraint

table$ - name of the table to create constraint on
columns$ - list of columns to apply constraint to

drop_primary_constraint Drops a
primary key
constraint

table$ - name of the table to drop constraint from
cascade$- indicates drop should cascade to
dependent foreign key constraints

Edge Intelligence User Guide August 2017 25

Unique Key Constraints

A unique key constraint defines a combination of one or more columns that are required to be

unique for every row. If there is an attempt to insert or update a row which would have the same

values as another existing row, the operation raises an exception.

Unique key constraints can be defined for global and central tables and there may be multiple

unique key constraints per table - but only one unique key constraint can be defined per column

combination.

Unique key constraints are managed by connecting to the network and using the following

functions:

Function Description Arguments

create_unique_constraint Creates a
unique key
constraint

table$ - name of the table to create constraint on
columns$ - list of columns to apply constraint to

drop_unique_constraint Drops a unique
key constraint

table$ - name of the table to drop constraint from
columns$ - list of columns constraint is applied to

Foreign Key Constraints

A foreign key constraint defines a combination of one or more columns that are required to have a

corresponding primary key value in another table. If there is an attempt to insert or update a row

which would have a value that does not correspond to a known primary key value, the operation

raises an exception.

Foreign key constraints can be defined for global and central tables and there may be multiple

foreign key constraints per table - but only one foreign key constraint can be defined per column

combination and it must be related to a compatible primary key in another table. The primary key is

deemed compatible if it has the same number of columns and castable column types as the foreign

key.

Foreign key constraints are managed by connecting to the network and using the following

functions:

Function Description Arguments

create_foreign_constraint Creates a
foreign key
constraint

table$ - name of the table to create constraint on
columns$ - list of columns to apply constraint to
reference$ - name of table with the associated
primary key

drop_foreign_constraint Drops a foreign
key constraint

table$ - name of the table to drop constraint from
columns$ - list of columns constraint is applied to

Edge Intelligence User Guide August 2017 26

Distribution Constraints

A distribution constraint specifies the column in a local table that is known to partition the data by

edge node. Any query attempting to join local tables requires that those local tables must have

compatible distribution constraints.

Distribution constraints can be defined for local tables only and there may be only one distribution

constraint per table.

Note that distribution constraints need only be defined if you have multiple local tables and

you intend to join between them in queries. However, distribution constraints are not fully

operational in the current release and as such this requirement is not yet enforced.

A join between a local table and a global table does NOT require a distribution constraint to be

defined.

Distribution constraints are managed by connecting to the network and using the following

functions:

Function Description Arguments

create_distribution_constraint Creates a
distribution
constraint

table$ - name of the table to create constraint on
column$ - column to apply constraint to

drop_distribution_constraint Drops a
distribution
constraint

table$ - name of the table to drop constraint from

Edge Intelligence User Guide August 2017 27

Managing Views
A view defines a virtual table that contains rows specified by a query.

Views are managed by connecting to the network and using the following functions:

Function Description Arguments

create_view Creates a new view view$ - name of the view to be created
query$ - query that specifies the rows in the view

drop_view Drops an existing
view

table$ - name of view to be dropped
cascade$ - indicates if drop cascades to dependent objects.

grant_table Grants a role query
access to a view

table$ - name of view to grant access to
role$ - name of role to grant query access to

rename_view Renames an existing
view

old$ - current name of the view
new$ - new name for the view

revoke_table Revokes query
access to a view
from a role

table$ - name of view to revoke access from
role$ - name of role to revoke query access from

In each of the above functions, the name of a view can be optionally qualified with a schema name.

If not qualified, the public schema is assumed.

Naturally, if you attempt to create a view using the name of an existing view an exception will be

raised; and similarly if you attempt to drop or rename a non-existent view.

Edge Intelligence User Guide August 2017 28

Managing Functions
A function defines processing logic that can be applied to query results.

A function can accept zero, one or more arguments and return a result and functions can be

overloaded such that the same function can be defined for different argument sets.

Functions are managed by connecting to the network and using the following command functions:

Function Description Arguments

create_function Creates a new
function

function$ - name of the function to be created
arguments$ - list of arguments accepted by the function
return$ - return type of the function
language$ - language the function body is written in
body$ - the body of the function

drop_function Drops an existing
function

function$ - name of function to be dropped
arguments$ - list of arguments accepted by the function
cascade$ - indicates if drop cascades to dependent objects.

rename_function Renames an
existing function

old$ - current name of the view
arguments$ - list of arguments accepted by the function
new$ - new name for the view

In each of the above functions, the name of a function can be optionally qualified with a schema

name. If not qualified, the public schema is assumed.

When creating, renaming or dropping a function, the argument list is a comma separated list of

argument name and argument type pairs, for example:

'left integer, right integer'

The return type of a function should be a standard database type such as integer, bigint, text etc.

The body of a function can be written in SQL or pl/pgSQL and the language parameter should specify

one of these.

A SQL function can execute a SQL statement to return the function result. For example, to return the

sum of two number arguments called left and right from a SQL function, the body would be:

select left+right;

To create this SQL function with the name 'exampleA' using create_function:

SELECT create_function('exampleA',

 'left integer, right integer',

 'integer',

 'SQL',

 'select left+right;');

A pl/pgSQL function is procedural and can contain conditional, loop and control structures - see

PostgreSQL documentation for details about the pl/pgSQL language. Each pl/pgSQL body must start

Edge Intelligence User Guide August 2017 29

with a BEGIN and finish with an END and include a RETURN statement which returns the function

result. For example, the body for a procedural version of the function above would be:

begin

 return left+right;

end

To create this pl/pgSQL function with the name 'exampleB' using create_function:

SELECT create_function('exampleB',

 'left integer, right integer',

 'integer',

 'pl/pgSQL',

 'begin return left+right; end');

Note that functions are not allowed to contain statements that would change the state of

the database and an exception is raised if such statements are included.

Edge Intelligence User Guide August 2017 30

Managing Sequences
A sequence is a sequential number generator typically used to populate a primary key column or as a

counting sequence. Once a sequence is defined it can be referenced by a column definition wishing

to use it.

All sequences start at 1 and increment by 1 up to a maximum value of 2^63 - 1.

Sequences are managed by connecting to the network and using the following functions:

Function Description Arguments

create_sequence Creates a new
sequence

sequence$ - name of the sequence to be created

drop_sequence Drops an
existing
sequence

sequence$ - name of sequence to be dropped
cascade$ - indicates if drop cascades to dependent objects.

rename_sequence Renames an
existing
sequence

old$ - current name of the sequence
new$ - new name for the sequence

In each of the above functions, the name of a sequence can be optionally qualified with a schema

name. If not qualified, the public schema is assumed.

Naturally, if you attempt to create a sequence using the name of an existing sequence an exception

will be raised; and similarly if you attempt to drop or rename a non-existent sequence.

Edge Intelligence User Guide August 2017 31

Managing Interfaces
Interfaces are used to parse messages received from external collection agents and append rows to

local tables; where each agent collects messages from a source such as a device, socket or file

stream.

The following framework is used to provision and configure those interfaces:

○ Adaptors provide generic message parsing capabilities and can be configured to parse

specific message formats. For example, there is a JSON adaptor that can be configured to

parse JSON messages of a specific format.

○ A port connects an adaptor to a local table using a specific adaptor configuration. Messages

received on a port are parsed using the adaptor configuration and appended to the

connected table.

○ A source definition identifies a source of data such as a device, file stream or socket.

○ A source can be attached to one port and one edge node and multiple sources can be

attached to the same port.

This framework allows:

○ Messages from a single source to be collected by multiple instance nodes under the same

edge node.

○ Messages from different sources may be appended to the same local table.

The entity relationship diagram below describes the relationships between sources, ports and

adaptors:

Edge Intelligence User Guide August 2017 32

Message State
The same message may be sent to multiple instance nodes under the same edge node to provide

message replication and high-availability; and sibling instance nodes under an edge node perform

multi-master synchronization to achieve a common data set on all instance nodes under an edge.

To enable instance nodes to synchronize their data, messages from each source must contain a

strictly monotonically increasing message state to uniquely identify every message. This state may

be a timestamp or a sequence number and must be convertible to a BIGINT type. The sequence of

message states from a source does not need to be contiguous - just strictly monotonic.

If the message state is discovered to be not strictly monotonic, then an exception will be thrown

during message parsing and the message will be rejected.

Edge Intelligence User Guide August 2017 33

Adaptors
An adaptor is a general purpose parser that converts messages to relational rows. To use an adaptor,

it is associated with a local via a port definition that specifies a configuration for how the adaptor

behaves.

There are two standard adaptors provided:

○ json – parses and converts json messages.

○ sv - parses and converts separated value messages (such as CSV).

These adaptors are described in more detail below.

JSON Adaptor

The JSON Adaptor takes multiple messages structured as an array of objects and converts each

object to a relational row. The adaptor configuration specifies:

○ A list of table columns to populate.

○ A list of object keys to map to the columns above in corresponding positional order.

○ The object key used for message state.

○ The type of message state used (time or number)

○ The format mask to be applied to message state when converting to BIGINT.

For example, consider the following two JSON messages:

[{"timestamp":"20161201:190501.123","temperature":45,"pressure":15},

 {"timestamp":"20161201:191002.291","temperature":44,"pressure":16}]

To configure the JSON adaptor to convert these to rows with a "temp" and "press" columns would

require the following configuration:

Parameter Setting

table columns temp,press

JSON keys temperature,pressure

state key timestamp

state type T (timestamp)

state mask YYYYMMDD:HH24MISS.MS

Edge Intelligence User Guide August 2017 34

SV Adaptor

The SV Adaptor takes multiple messages structured as a records with delimited fields and converts

each record to a relational row. The adaptor configuration specifies:

○ List of table columns to populate

○ List of field positions that correspond to the columns above

○ Field delimiter character

○ Record delimiter character

○ Position of the message state field

○ Type of message state used (time or number)

○ The format mask to be applied to message state when converting to BIGINT.

For example, consider the following two records:

20161201:190501.123,45,15;

20161201:190501.123,44,16;

To configure the SV adaptor to convert these records to rows with a "temp" and "press" columns

would require the following configuration:

Parameter Setting

table columns temp,press

field positions 2,3

field delimiter ,

record delimiter ;

state position 1

state type T (timestamp)

state mask YYYYMMDD:HH24MISS.MS

For non-printable delimiter characters, use E'\xNN' notation to specify a hexadecimal ASCII code for

the character, eg. use E'\x0D' to specify ASCII code 13 (decimal). The following escape sequences can

also be used to indicate special characters:

○ \b - backspace

○ \f - form feed

○ \n - new line

○ \r - carriage return

○ \t - tab

Edge Intelligence User Guide August 2017 35

Format Masks

The JSON and SV Adaptors allow an optional format mask to be used for converting message content

into message state. The format mask used depends on the type of the content (number or

timestamp) and the following mask patterns are available:

Type Pattern Meaning

Timestamp H hour of day (01-12)

 HH12 hour of day (01-12)

 HH24 hour of day (00-23)

 MI minute (00-59)

 SS second (00-59)

 MS millisecond (000-999)

 US microsecond (000000-999999)

 SSSS seconds past midnight (0-86399)

 AM, am, PM or pm meridiem indicator (without periods)

 A.M., a.m., P.M. or

p.m.

meridiem indicator (with periods)

 Y,YYY year (4 or more digits) with comma

 YYYY year (4 or more digits)

 YYY last 3 digits of year

 YY last 2 digits of year

 Y last digit of year

 IYYY ISO 8601 week-numbering year (4 or more

digits)

 IYY last 3 digits of ISO 8601 week-

numbering year

 IY last 2 digits of ISO 8601 week-

numbering year

 I last digit of ISO 8601 week-numbering

year

 MONTH full upper case month name (blank-

padded to 9 chars)

Edge Intelligence User Guide August 2017 36

 Month full capitalized month name (blank-

padded to 9 chars)

 month full lower case month name (blank-

padded to 9 chars)

 MON abbreviated upper case month name (3

chars in English, localized lengths

vary)

 Mon abbreviated capitalized month name (3

chars in English, localized lengths

vary)

 mon abbreviated lower case month name (3

chars in English, localized lengths

vary)

 MM month number (01-12)

 DAY full upper case day name (blank-padded

to 9 chars)

 Day full capitalized day name (blank-padded

to 9 chars)

 day full lower case day name (blank-padded

to 9 chars)

 DY abbreviated upper case day name (3

chars in English, localized lengths

vary)

 Dy abbreviated capitalized day name (3

chars in English, localized lengths

vary)

 dy abbreviated lower case day name (3

chars in English, localized lengths

vary)

 DDD day of year (001-366)

 IDDD day of ISO 8601 week-numbering year

(001-371; day 1 of the year is Monday

of the first ISO week)

 DD day of month (01-31)

 D day of the week, Sunday (1) to Saturday

insert_rowcreate(7)

 ID ISO 8601 day of the week, Monday (1) to

Sunday (7)

Edge Intelligence User Guide August 2017 37

 W week of month (1-5) (the first week

starts on the first day of the month)

 WW week number of year (1-53) (the first

week starts on the first day of the

year)

 IW week number of ISO 8601 week-numbering

year (01-53; the first Thursday of the

year is in week 1)

 CC century (2 digits) (the twenty-first

century starts on 2001-01-01)

 J Julian Day (days since November 24,

4714 BC at midnight)

 TZ uppercase time-zone name

 tz lowercase time-zone name

Number 9 value with the specified number of

digits

 D expected position of decimal point

 S expected position of sign

 V shift value by number of digits

To convert identifiers with a mixture of digits and letters and symbols, by extracting only the digits,

use a number type with a format mask containing a series of "9" to the length of the maximum

expected identifier. For example, to convert 'A12/34' to '1234' use a format mask of '999999'.

Edge Intelligence User Guide August 2017 38

Additional Adaptors

Adaptors other than the standard JSON and SV adaptors can be defined to extend the library of

available adaptors.

Adaptors are created and dropped by connecting to the network database and using the following

functions:

Function Description Arguments

create_adaptor Creates a new
adaptor

adaptor$ - name of the adaptor to be created
description$ - description of the adaptor (optional)
check$ - name of function used to validate an adaptor
configuration
open$ - name of the function used to open an adaptor
close$ - name of the function used to close an adaptor
append$ - name of the function used to append
messages
arguments$ - list of arguments required for an adaptor
configuration

drop_adaptor Drops an existing
adaptor

adaptor$ - name of adaptor to be dropped

As can be seen from the create_adaptor() function, each adaptor is required to provide the following

four functions:

Function Description

Check Checks that the configuration parameters provided by a user when deploying the adaptor are
valid.

Open Opens an adaptor session to prepare for parsing one or more messages. This may allocate
resources required for parsing purposes.

Close Closes an adaptor session to enable any allocated adaptor resources to be released

Append Receives messages, parses them and appends their rows to a temporary data table

The check function is called when the adaptor is being configured and deployed. It validates that the

configuration specified is sufficient and valid for the adaptor. Each adaptor has its own specific set of

configuration parameters.

The open, append and close functions are called when the adaptor is being used to process

messages during a message collection session. The open function is called when the session starts

and allocates any resources required by the adaptor. The close function is called at the end of the

session and de-allocates the resources no longer required by the adaptor. In between, the open and

close function calls the append function will be likely called multiple times to process a stream of

messages. Each append function call is a passed one or more messages and these are parsed,

translated into rows and appended to a temporary data table.

All of the adaptor functions receive the configuration parameter settings specified when an adaptor

was deployed.

Edge Intelligence User Guide August 2017 39

Note that the functions are created separately from the adaptor. This means that an

adaptor being used with a port can be dropped and the port will continue to operate as

the configuration remains with the port and the adaptor functions will continue to exist.

Dropping an adaptor simply removes the adaptor definition so that it cannot be used with

future port definitions.

The parameters required by the adaptor functions varies according to the needs of each adaptor,

but the following parameters are always provided prior to any adaptor specific parameters:

Function Parameter Descriptionstate$rea

Check table$ Name of the table to be appended to

Open source$ Identity of the source of the messages

 state$ The starting state of the table to be appended to

Close source$ Identity of the source of the messages

 state$ The closing state of the table that has been appended to

Append message$ The message to be parsed

 source$ Identity of the source of the messages

 state$ The state of the table from the previous append

The adaptor append function is required to implement the following functionality:

○ Parse the messages provided in the function call.

○ Insert each message as a row into a temporary table called $data.

The temporary table $data is created and dropped by the interface framework and the adaptor

function does not need to create or drop it.

The $data table will contain all of the columns of the target local table and the following additional

columns:

○ The identity of the source - $source (BIGINT)

○ The message state - $state (BIGINT)

It is the responsibility of the adaptor append function to populate all of the columns of the $data

table. The identity of the source is passed into the append function call and can be used directly, but

the $state column value must be parsed out of the message.

The following functions are used by the standard adaptors and can be used as examples for

implementing new adaptor functions:

Adaptor Function Description

JSON json_adaptor_check Checks adaptor configuration

 json_adaptor_open Opens adaptor and creates temporary table for JSON type mapping

 json_adaptor_close Closes adaptor and drops temporary table for JSON type mapping

 json_adaptor_append Parses and appends messages to $data table

SV sv_adaptor_check Checks adaptor configuration

 sv_adaptor_open Opens adaptor (does not allocate any resources)

 sv_adaptor_close Closes adaptor (does not deallocate any resources)

 sv_adaptor_append Parses and appends messages to $data table

Note that currently it is not possible to create new adaptor functions - but this feature will be

provided in a future release.

Edge Intelligence User Guide August 2017 40

The star$adaptors view provides a list of installed adaptors:

Column Description

name Name of the adaptor

description Description of the adaptor

check_function Name of the adaptor check function

open_function Name of the adaptor open function

close_function Name of the adaptor close function

append_function Name of the append adaptor function

arguments List of adaptor configuration arguments

Edge Intelligence User Guide August 2017 41

Ports
A port provides a channel for appending messages of a specific format to a local table. A port

associates an adaptor with a local table via a specific adaptor configuration.

Ports are created and dropped by connecting to the network database and using the following

functions:

Function Description Arguments

create_port Creates a new port name$ - name of the port to be created
description$ - description of the port (optional)
table$ - name of local table to receive messages
adaptor$ - name of the adaptor used for parsing
arguments$ -arguments used for the adaptor
configuration

drop_port Drops an existing
port

port$ - name of port to be dropped

test_port Tests a port
configuration

port$ - name of the port to be tested
messages$ - message text to be tested

Once a port is defined, one or more sources can be attached to it to provide a stream of messages.

The test_port() function can be used to test a port configuration against sample message text to

verify that the configuration works for the message supplied. If the configuration is invalid for the

sample message then an exception is thrown; otherwise the function returns the content of the

target table obtained by executing the port configuration. For example:

select * from test_port('port','1,1;');

 result

 (value,$source,$state)

 (1,0,1)

(2 rows)

The first row returned by test_port() is always the list of columns in the table and the $source

column is always shown as zero. Note that none of the message data supplied during a test_port

function call ever reaches the target table - the function simply verifies the configuration for the

sample messages.

The star$ports view provides a list of ports:

Column Description

name Name of the port

description Description of the port

append_table Name of the local table that receives rows from the port

adaptor Name of the adaptor used for parsing

arguments List of adaptor argument settings

Edge Intelligence User Guide August 2017 42

Sources
A source identifies a source of messages such as a device, socket or file stream.

A source must be attached to a specific port at a specific edge node to collect and direct data from

the source to a local table at an edge point in the network. Note that multiple instance nodes under

an edge node can collect data from the same source.

Sources are managed by connecting to the network database and using the following functions:

Function Description Arguments

create_source Creates a new
source

tag$ - resource tag for the source
description$ - description of the source (optional)

attach_source Attaches a source to
a port and/or edge
node

tag$ - resource tag of the source
port$ - name of the port to attach to (optional)
node$ - name of the edge node to attach to (optional)

drop_source Drops an existing
source

source$ - name of source to be dropped

A source is defined with a resource tag which is the identity which uniquely identifies the device,

socket or file stream.

The star$sources view provides a list of sources:

Column Description

tag Resource identity tag of the source

description Description of the source

port Name of the attached port

node Name of the attached edge node

Edge Intelligence User Guide August 2017 43

Agents
Data is collected from a source via an agent process which connects to one of the available instance

node databases and sends the messages for parsing via an append_source() function call.

Agents are coded and deployed as required and should operate as described below.

The agent process should obtain a connection to its target instance node as follows:

○ Connect to the administration database as star$source user on any server within the

network.

○ Call network_connection(<network>) to get a connection string for the network.

○ Close the connection to the administration database.

○ Open the network connection using the connection string returned from

network_connection().

○ Call instance_connection(<tag>) to get a connection string for an instance node.

○ Open the assigned instance connection string.

Note that in the above, each connection prior to the final instance connection simply provides a

directory service as follows:

○ The administration database provides a directory for the available network databases.

○ The network database provides a directory for the available instance databases.

The call to instance_connection allocates an available instance node to the source and locks the

source tag on the instance node to prevent any other agent processes connecting to the same

instance for the same source. Note that the network connection has to be kept open for the

duration of the agent process to maintain the lock on the allocated instance node.

Once the connection is made, the agent process should:

○ Call open_source(<tag>) to start a source session

○ Repeatedly call append_source(<messages>) to append messages received

When an agent process gracefully terminates, it should

○ Call close_source()

○ Close the instance database connection.

○ Close the network database connection.

The following table describes each of the functions used by an agent:

Function Description Arguments

network_connection Returns a connection
string for a network
database

network$ - name of the network to connect to

instance_connection Returns a connection
string for an instance
database

tag$ - tag name of the source to be locked

open_source Starts a source session tag$ - name of source to be opened

Edge Intelligence User Guide August 2017 44

append_source Appends one or
messages

messages$ - text string containing one or more
messages

close_source Closes the source
session

None

Normally, the messages supplied to append_source() will be in the format defined by the port

configuration - but if any of the messages fails to conform to the port configuration the call to

append_source() will raise an exception.

An exception is also raised by append_source() if the message state is deemed out of order or

repeated by one or more messages in the call.

The call to append_source() will either process and commit all of the messages in the call or will

reject all messages in the call if an exception is raised.

if you need to achieve message processing rates of 10,000 messages/second or above, it is

recommended that calls to append_source() be no more frequent than every 1 second.

Edge Intelligence User Guide August 2017 45

Standard Agents

Input Agent

A standard agent is provided which receives records on standard input and streams that data via a

configured source.

This agent runs in Java and requires 3 parameters:

○ Host name of the database server to connect to

○ Name of the network to connect to.

○ Name of the source tag to be streamed.

○ Optional record separator character

This input agent can executed using:

es_agent [--streamer] <host> <network> <tag> [<record separator>]"

Where <host> is the database server host name or address; <network> is the name of the network

to connect to; <tag> is the tag of source to be streamed; and <record separator> is an optional

record separator (otherwise new line is assumed). See File Transactions below for details about the

optional --streamer switch.

This agent will wait on standard input indefinitely and will execute until it is aborted via a process or

command termination.

The agent will only append records it has received when either of the following occurs since the last

append:

○ More than 5000 records have been received.

○ It has waited longer than 5 seconds for the next record.

Edge Intelligence User Guide August 2017 46

File Streamer

A file streamer is also provided for use with the input agent above to process records from a file

stream. A file stream is a directory where new files are regularly deposited for processing. The file

streamer requires the following:

○ Files deposited for processing are complete and closed files

○ All files are of the same format and use the same field delimiter

○ The file names are alphabetically ordered in the sequence they are to be processed.

Hence a source directory for a file stream may contain files named data001.dat, data002.dat etc.

The file streamer will process files in name order and stream the records from each file to standard

output. Each record streamed is prepended with the modification time of the file and the record

number as the first field of each record output. This first field can be used a message state field and

should be configured in the adaptor as a number field with a format mask of 19 digits (i.e. all 9s).

The modification time of a file is calculated relative to 1 Jan 2000 and resolved down to seconds and

is presented in the first 10 digits while the record number is presented in the last 9 digits.

For example, the first two data records from a file may be prepended with 0535635255000000001

and 0535635255000000002 respectively.

As each file is processed, it is moved to a specified fulfilment directory to avoid a file being

processed more than once. Note that if you edit a file that has been processed, its modification time

will change and if the file is moved back to the source directory, it will be treated and processed as

new data.

This streamer runs in Java and requires 3 parameters:

○ Glob expression for finding files

○ Field delimiter used in the source files.

○ Fulfilment directory for receiving processed files.

○ Optional number for passes

In the glob expression for finding files, glob characters (? and *) must only appear within a file name

and not in the directory path. It is also possible to run the FileStream with an explicit file path

(without any glob characters) to process a single file.

This file streamer can executed using:

es_streamer {--streamer] <glob> <delimiter> <fulfilment> [<passes>]

Where <glob> is a glob expression for the source files; <delimiter> is the field delimiter used in the

file records; <fulfilment> is the fulfilment directory for receiving processed files; and <passes> can be

used to limit the number of files processed. See File Transactions below for details about the

optional --streamer switch.

This agent will wait on files to appear in the source directory indefinitely and will execute until it is

aborted via a process or command termination.

The file streamer can be used as input the standard input agent by piping its output to it.

Edge Intelligence User Guide August 2017 47

File Transactions

Normally, when es_streamer output is piped to the es_agent, they communicate on a record by

record basis, but this means that the agent commits occur asynchronously with file boundaries. This

can make recovery from failed or aborted file streaming difficult.

Both the file streamer and agent can accept a --streamer switch which links commits with the end of

each file read. The --streamer option should only be used when piping es_streamer output to the

es_agent and when the streamer and agent both use the option.

Edge Intelligence User Guide August 2017 48

Managing Data
This section describes the management of data in global and central tables which is created and

managed centrally in the catalog.

Data in non-local tables is considered mutable and rows can be inserted into, updated in and deleted

from those tables. Any changes made to data in global tables are also propagated out to the instance

nodes across the network.

The following functions can be used to manage data in non-local tables:

Function Description Arguments

insert_rows Inserts rows into a
table

table$ - name of the table to insert into
columns$ - list of columns to insert into
rows$ - row data to be inserted

delete_rows Deletes rows from a
table

table$ - name of table to delete rows from
where$ - where clause to identify rows to be deleted

update_rows Updates rows in a
table

table$ - name of table to update rows in
columns$ - list of columns to be updated
values$ - list of expressions to update columns with
where$ - where clause to identify rows to be updated

copy_rows Copies rows into a
table

table$ - name of table to copy rows into

The insert_rows() function requires a rows$ parameter that specifies the rows to be inserted. This

parameter accepts a comma separated list of one or more rows where each row is expressed as:

(<value> [, <value>]...)

Where each value corresponds in positional order with the list of columns in the columns$

parameter.

Any text or character values should be enclosed in single quotes - which need to be double escaped

because the parameter itself is a string. For example,

SELECT insert_rows('my_table',

 'id,name,salary',

 '(1,''billy'',50000),(2,''bobby'',45000)');

The delete_rows() and update_rows() functions require a where$ parameter to identify the rows to

be deleted or updated. For example,

SELECT delete_rows('my_table',

 'id=2');

The update_rows() function requires a values$ parameter to list the expressions used to update the

columns with. For example,

SELECT update_rows('my_table',

 'salary',

 'salary*1.02',

 'id=2');

Edge Intelligence User Guide August 2017 49

The copy_rows() function is used to copy rows into a table from a temporary table with the same

name. This may be used in conjunction with a loader to copy a large number of rows from a file into

a temporary table and then into the target table.

For example, joloader can be used to copy a file into a global table using the command:

joloader <network> <file> <table>

-U<user> -E~"select copy_rows('<table>');"

Where <network> is the name of the network; <file> is the name of the file to be loaded; <table> is

the name of the global table; and <user> is the name of a user with star$modify role granted.

See the Edge Intelligence Loader user guide for detailed information about the features and

capabilities of the file loader.

Edge Intelligence User Guide August 2017 50

Collecting Data
Data for local tables is collected on instance nodes via agents, adaptors and ports and these are

described in the Managing Interfaces section.

Multiple instances under the same edge node collect the same data to provide high availability. This

data has to be synchronized and replicated between instance nodes to mitigate against possible

communication and hardware failures at instance nodes and a regular job runs on each instance

node to synchronize its data with its siblings.

Migrating Data
If you need to migrate data from files into a local table, you can do so on each edge server using the

following loader command:

joloader <network>$<instance> <file> <table> -Ujustone

 c'<columns>,"$source","$state"' J'0,%I%'

Where <network> is the name of the network; <instance> is the node identity of the instance node

to load into; <file> is the name of the file to be loaded; <table> is the name of the local table and

<columns> is the list of table columns to load into.

This command uses the J switch to populate the source with a zero value and the state with a unique

identifier.

Note you will need root access to the edge server to do this and that you should only migrate data

into one instance node under each edge node. If you attempt to migrate the same data into two or

more instance nodes under the same edge node you will duplicate data because the message state

numbers assigned by the loader are unique.

Edge Intelligence User Guide August 2017 51

Performing Queries
Users are able to perform queries by establishing a connection to an available catalog server - direct

connections to edge servers are not permitted.

Queries are performed using the standard SQL query language to select from one or more tables and

or views that have been defined as described above.

Each query can be submitted in the context of an area or edge node within the network. For

example, in the network below, a query can:

○ Include the entire network by issuing a query in the context of node 'US'.

○ Cover the 'NE' and 'SE' edges by issuing the query in the context of node 'East'

○ Include 'SE' only by issuing the query in the context of node 'SE'

The node context for a query can be specified using the USE NODE clause at the end of a query

statement. This clause requires a known area or edge node name enclosed in single quote marks.

For example:

SELECT count(*),column_1

FROM my_table

GROUP BY column_1

ORDER BY 1 DESC

LIMIT 10

USE NODE 'US';

Join Queries
A query can perform inner joins between tables of any scope; except that inner joins between two

local tables requires that there is a compatible distribution constraint on both local tables. See the

section on Distribution Constraints for further details.

A query can perform outer joins between tables of any scope, except that a local table is not allowed

to return null rows when joined with a global table. For example, for tables local_table and

global_table with local and global scope respectively, the following query would raise an exception:

SELECT count(*)

FROM local_table l

Edge Intelligence User Guide August 2017 52

RIGHT JOIN global_table g ON (g.column_1=l.column_1);

This query would raise an exception because the right join can potentially return null rows from the

local table for non-matching rows from the global table.

Edge Intelligence User Guide August 2017 53

Query Goals
Each edge node node may be linked to multiple instance nodes below it and during a query, only one

of those instance nodes will be chosen to service the query at that edge point. The choice of instance

node can be influenced by setting one of the following query goals before issuing the query:

○ Response – provide the fastest response time

○ Available - randomly choose any one of the currently available instance nodes

○ Complete - choose the instance node with the most rows in a particular table

○ Recent - choose the instance node with the most recently received rows in a particular table

○ Balance - choose the instance node which is least busy

The default query goal is to provide the fastest response time.

The goal for a query can be specified using the USE GOAL clause at the end of a query statement.

This clause requires one of the above goals to be specified and is case insensitive. For example:

SELECT count(*),column_1

FROM my_table

GROUP BY column_1

ORDER BY 1 DESC

LIMIT 10

USE NODE 'US'

USE GOAL recent;

Edge Intelligence User Guide August 2017 54

Query Syntax
Queries are performed using the standard SQL query language, except for the following restrictions:

○ Use of recursive queries are not currently supported.

○ Window queries are not currently supported.

○ Use of FETCH is not supported

○ Use of UPDATE is not supported

Hence a valid SQL query syntax is described by the following:

SELECT [ALL | DISTINCT [ON (expression [, ...])]]

 [expression [[AS] output_name] [, ...]]

 [FROM table_name | (query) [[AS] alias] [, ...]

 [INNER | LEFT | RIGHT | FULL [OUTER]] JOIN table_name | (query) [[AS] alias] ON condition [, ...]

 [WHERE condition]

 [GROUP BY position | element [, ...]]

 [HAVING condition [, ...]]

 [ORDER BY position | expression [ASC | DESC] [, ...]]

 [LIMIT { count }]

 [USE NODE 'node']

 [USE GOAL goal]

Edge Intelligence User Guide August 2017 55

Managing Jobs
Jobs are processes that execute regularly on nodes in a network to perform background tasks.

An example of a job is the process that executes regularly on each instance node to perform data

synchronization activities.

The star$jobs view provides a list of jobs and their status on the server you are connected to:

Column Description

name Name of the job

description Description of what the job does

command The command executed by the job

period Period of execution

enabled Indicates if the job is currently enabled

scheduled Time at which job is scheduled for its next run

failed Indicates if the last run failed

executed Date and time last run completed

duration Duration of last run

error Error message associated with a failed run

There is also a star$jobs function that provides a list of jobs and their status on remote instance

nodes which can used as follows from a network connection on a catalog server:

SELECT * FROM star$jobs(<node>);

Where <node> is a node in the network at or above an edge node. This function returns the

following information:

Column Description

edge_id Identity of the parent edge node

edge_name Name of the parent edge node

connection Connection string for the instance node

state Connection state (0 indicates OK)

error Error message (from either a connection or job failure)

instance Name of the instance node on which the job executes

name Name of the job

enabled Indicates if the job is currently enabled

scheduled Time at which job is scheduled for its next run

failed Indicates if the last run failed

executed Date and time last run completed

duration Duration of last run

The following table describes the standard jobs that run on every instance node:

Job Period Description

Synchronize 1 minute Synchronizes instance node with the catalog and sibling instance
nodes

Edge Intelligence User Guide August 2017 56

Managing Resources
Views and functions are provided for querying resource usage by instance nodes across the network

in the following areas:

○ Configuration settings

○ Node connection status

○ Job status

○ Log file messages

The following functions on each catalog node provide information about one or more remote

instance nodes in the network.

Function Description Arguments Returns

star$configuration Returns
configuration
settings for
each instance
node

node$ - node
to query
from

edge_id - edge node identity
edge_name - name of edge node
connection - instance node connection string
state - connection state
error - connection error
identity - instance node identity
key - configuration key
value - configuration setting

star$connections Returns
connection
state for each
instance node

node$ - node
to query
from

edge_id - edge node identity
edge_name - name of edge node
connection - instance node connection string
state - connection state
message - error message
detail - error detail

star$jobs Returns job
states for
each instance
node

node$ - node
to query
from

edge_id - edge node identity
edge_name - name of edge node
connection - instance node connection string
state - connection state
error - error message
instance - name of instance node
name - name of the job,
enabled - indicates if job is enabled
scheduled - when scheduled to run next
failed - indicates if last run failed
executed - date and time of last execution
duration - duration of last execution

star$logs Returns
recent log
messages for
each instance
node

node$ - node
to query
from
size$ -
maximum
number of
characters to
return from
the log

edge_id - edge node identity
edge_name - name of edge node
connection - instance node connection string
state - connection state
information - most recent log messages

Edge Intelligence User Guide August 2017 57

Note the following for the functions above:

○ One or more rows will be returned for each instance node underneath the query node

○ For each instance node currently unavailable, it will return a single row with a non zero

connection state and an error message detailing the reason for its unavailability.

The following are examples of function usage:

mynw# SELECT edge_name,connection,state,message

FROM star$connections('Denmark');

 edge_name | connection | state | message

------------+-------------------------------+-------+---------

 Denmark | host=localhost dbname=mynw$31 | 0 |

 Denmark | host=localhost dbname=mynw$59 | 0 |

(2 rows)

mynw# SELECT edge_name,identity,key,value

FROM star$configuration('Denmark');

 edge_name | identity | key | value

-----------+-----------+-----------+-----------

 Denmark | 31 | $trace | false

 Denmark | 31 | $catalogs | localhost

 Denmark | 31 | $job | t

 Denmark | 59 | $trace | false

 Denmark | 59 | $catalogs | localhost

 Denmark | 59 | $job | t

(6 rows)

Functions will also be provided for returning CPU, memory and disk utilisation and process
and OS information from instance nodes in a future release.

Edge Intelligence User Guide August 2017 58

Security

Server Security
Database connections between servers are authenticated via SSL certificates and only connection

requests with a valid certificate are accepted. Each server can operate as a client or server with

respect to any other server in the same network - therefore every server has both a client and server

side SSL certificate the installation and provisioning process automatically creates the certificate

pairs required between servers.

Instance servers operate in potentially hostile environments outside of data centre and are locked

down as follows to prevent accidental or malicious exposure of data:

○ Only the root user is permitted SSH access and this user is authenticated using a strong and

secure password. This SSH access is only used for occasional software installation and

upgrade purposes.

○ An instance server only permits database connections from other servers using a defined

system user with the required client SSL certificate.

○ An instance server can accept also connection requests via the "star$source" user from an

agent processes for the purposes of receiving input messages for local data. The star$source

user is restricted to a limited set of functions used solely for the collection of new messages.

Catalog servers should operate in a secure environment and should enforce appropriate

authentication methods on users wishing to connect to them. The following standard authentication

methods are available:

○ Password.

○ GSSAPI.

○ SSPI.

○ Kerberos.

○ LDAP.

○ RADIUS.

○ PAM.

Edge Intelligence User Guide August 2017 59

Object Security
Access to nodes and database objects is managed via a conventional role based framework whereby:

○ Roles are explicitly granted or revoked from users

○ Access for database objects is explicitly granted to roles (and implicitly to users who have

that role granted).

Users and roles can be defined and granted as required for the purposes of controlling query access

to the following objects.

○ Schemas

○ Tables

○ Views

○ Columns

○ Nodes

The following functions are used to manage roles:

Function Description Arguments

create_role Creates a new role role$ - name of the role to be created

drop_role Drops an existing role user$ - name of role to be dropped

grant_user Grants a user access to
a role

user$ - name of user to be granted a role
role$ - name of role to be granted

revoke_user Revokes access to a role
from a user

user$ - name of user to revoke role from
role$ - name of role to be revoked

Note that the above functions are only available in the star$administration database.

Roles are granted to or revoked from database objects using the following functions:

Function Description Arguments

grant_column Grants query access
to a column

table$ - table containing the columns
columns$ - list of columns grant access to
role$ - role to be granted query access

grant_node Grants query access
to a node

node$ - name of node to grant access to
role$ - name of role to be granted access

grant_schema Grants query access
to a schema

schema$ - schema to grant access to
role$ - role to be granted query access

grant_table Grants query access
to a table

table$ - table to grant access to
role$ - role to be granted query access

revoke_column Revokes query
access to a column

table$ - table containing the columns
columns$ - list of columns to revoke access from
role$ - role to be revoked query access

revoke_node Revokes query
access to a node

node$ - name of node to revoke access from
role$ - name of role to be revoked access

revoke_schema Revokes query
access to a schema

schema$ - schema to revoke access from
role$ - role to be revoked query access

Edge Intelligence User Guide August 2017 60

revoke_table Revokes query
access to a table

table$ - table to revoke access from
role$ - role to be revoked query access

Note that by default roles are denied query access to schemas, tables and columns until

explicitly granted; while a node is available for query to all roles until access is explicitly

limited to one or more roles.

The following standard roles are predefined and may be granted to users .

Role Description

star$administrate Administrate networks, users and roles

star$grant Grant or revoke roles to and from users and objects

star$network Manage network topology

star$define Define database objects (DDL)

star$modify Modify database objects (DML)

star$query Perform queries

star$append Append data to local tables

star$purge Purge data from local tables

A standard user must be granted one or more of the above roles to perform the operations

associated with those roles. For example, a user would be granted the star$query role to allow them

to perform queries.

In a future release it will be possible to limit a schema to only exist on a subset of nodes in a

network.

Edge Intelligence User Guide August 2017 61

Auditing
An audit trail is maintained on the catalog servers for all metadata changes and queries and this

audit trail records:

○ Who submitted the request

○ When the request was submitted

○ The SQL used to effect the request

The audit trail can be queried using the star$audit view which contains the following columns:

Column Description

username Name of the user who applied the change

datetime Timestamp when change was applied

sql The function call invoked to effect the change

An example of an audit trail is given below:

 username | datetime | sql

----------+---------------------+-----------------------------------

 billy | 2017-03-23 10:15:52 | SELECT _star."_create_node"

(109,'Denmark','','E','','','',NULL,NULL,NULL,NULL,'D')

 billy | 2017-03-23 10:22:22 | SELECT

_star."_create_table"(9,'public.region','r_regionkey integer,r_name

varchar(25),r_comment varchar(152)','G','jo_tablespace')

 bob | 2017-03-23 10:22:22 | SELECT r_name,r_comment FROM region

...

It is possible to purge the audit to drop entries that occur before a given date using the following

function:

Function Description Arguments

purge_audit Purge old audit entries datetime$ - date to retain entries from

Note that purge_audit() does not guarantee to drop all entries before the specified date, but

rather guarantees to keep entries for or after the specified date.

Only a user granted the star$administrate role is permitted to query or purge the audit trail.

Edge Intelligence User Guide August 2017 62

Metadata Views
Metadata views are provided in each network database and the star$administration database on a

catalog server.

Network Views
The following metadata views are provided in each network on a catalog server:

View Description

star$adaptors Defined adaptors

star$audit Audit trail of metadata changes

star$columns User defined table columns

star$configuration Current configuration settings

star$constraints User defined table constraints

star$functions User defined functions

star$jobs Status of background jobs

star$locks Active locks

star$nodes User defined nodes in the network

star$ports User defined ports

star$schemas User defined schemas

star$sequences User defined sequences

star$sources User defined sources

star$tables User defined tables

star$trace Query tracing

star$views User defined views

Each of these views is described below:

star$adaptors

The star$adaptors view provides a list of installed adaptors and contains the following columns:

Column Description

name Name of the adaptor

description Description of the adaptor

check_function Name of the adaptor check function

open_function Name of the adaptor open function

close_function Name of the adaptor close function

append_function Name of the append adaptor function

arguments List of adaptor configuration arguments

star$audit

The star$audit view provides an audit trail of metadata changes and queries:

Column Description

username Name of the user who submitted the request

datetime Timestamp when request was submitted

sql The SQL statement used to effect the request

Edge Intelligence User Guide August 2017 63

star$columns

The star$columns view lists all user defined table columns:

Column Description

schema_name Name of the schema to which the column belongs

table_name Name of table to which column belongs

column_name Name of the column

type Data type of the column

star$configuration

The star$configuration view lists current configuration settings:

Column Description

key Name of configuration parameter

value Current parameter value

star$constraints

The star$constraints view lists all user defined constraints:

Column Description

schema_name Name of the schema to which the constraint belongs

table_name Name of table on which constraint is defined

type Constraint type (Distribution, Foreign Key, Primary Key, Unique)

columns List of columns in the constraint

reference Primary key table referenced by a foreign key

star$functions

The star$functions view lists all user defined functions:

Column Description

schema_name Name of the schema to which the function belongs

function_name Name of the function

return Return data type

arguments List of function argument names and types

Edge Intelligence User Guide August 2017 64

star$jobs

The star$jobs view provides a list of jobs and their status:

Column Description

name Name of the job

description Description of what the job does

command The command executed by the job

period Period of execution

enabled Indicates if the job is currently enabled

scheduled Time at which job is scheduled for its next run

failed Indicates if the last run failed

executed Date and time last run completed

duration Duration of last run

error Error message associated with a failed run

star$locks

The star$locks view provides a list of active locks:

Column Description

lock_id Internal lock identity

resource Name of the locked resource

pid Identity of the process that is requesting the lock

mode Mode of the lock requested

granted Indicates if the lock has been granted

star$nodes

The star$nodes view provides a list of user defined nodes:

Column Description

id Unique node identity

name Name of the node

parent Name of the parent node

description Description of the node

type Node type. A, E or I for area, edge or instance node respectively

host The server host address for an instance node

address Address information for the node

location Location information for the node

latitude Latitude of the node

longitude Longitude of the node

readable Indicates if an instance node is currently readable

writable Indicates if an instance node is currently writable

Edge Intelligence User Guide August 2017 65

star$ports

The star$ports view provides a list of user defined ports:

Column Description

name Name of the port

description Description of the port

append_table Name of the local table that receives rows from the port

adaptor Name of the adaptor used for parsing

arguments List of adaptor argument settings

star$schemas

The star$schemas view provides a list of user defined schemas:

Column Description

schema_name Name of the schema

star$sequences

The star$sequences view provides a list of user defined sequences:

Column Description

schema_name Name of the schema to which the sequence belongs

function_name Name of the sequence

star$sources

The star$sources view provides a list of user defined sources:

Column Description

tag Resource identity tag of the source

description Description of the source

port Name of the attached port

node Name of the attached edge node

star$tables

The star$sources view provides a list of user defined sources:

Column Description

schema_name Name of the schema to which the table belongs

table_name Name of the table

scope Scope of the table (Central, Global, Local)

Edge Intelligence User Guide August 2017 66

star$trace

The star$trace view provides the results from traced queries:

Column Description

trace Unique trace identity

stage Stage of query (0 indicates synchronisation stage)

step Step of query

datetime Timestamp when step started

tick System tick when step started

connection Connection when step was executed

rows Number of rows returned by the step

elapsed Duration of step

sql SQL statement executed

star$views

The star$views view provides a list of user defined views:

Column Description

schema_name Name of the schema to which the view belongs

scope Scope of the table (Central, Global, Local)

Edge Intelligence User Guide August 2017 67

Administration Views
The following metadata views are provided in the star$administration database on a catalog server:

View Description

star$audit Audit trail of metadata changes

star$jobs Status of background jobs

star$networks User defined networks

star$roles All defined roles

star$users All defined users

Each of these views is described below:

star$audit

The star$audit view provides an audit trail of metadata changes in the administration database:

Column Description

username Name of the user who applied the change

datetime Timestamp when change was applied

sql The function call invoked to effect the change

arguments List of adaptor configuration arguments

star$jobs

The star$jobs view provides a list of jobs and their status:

Column Description

name Name of the job

description Description of what the job does

command The command executed by the job

period Period of execution

enabled Indicates if the job is currently enabled

scheduled Time at which job is scheduled for its next run

failed Indicates if the last run failed

executed Date and time last run completed

duration Duration of last run

error Error message associated with a failed run

star$networks

The star$networks view lists all user defined networks:

Column Description

name Name of the network

description Description of the network

star$roles

The star$roles view lists all defined roles:

Column Description

role_name Name of the role

Edge Intelligence User Guide August 2017 68

star$users

The star$users view lists all defined users:

Column Description

user_name Name of the user

login Indicates if login is enabled

Edge Intelligence User Guide August 2017 69

Example of Deploying a Network
The following provides a complete example of deploying a network on vanilla install. The example
uses the josql SQL command interface to execute SQL commands. In these examples, capitalization
of SQL reserved words has been used for clarity - but is not required.

#connect to the star$administration database

josql star\$administration star\$administrator

-- create analyst role

star$administrator=# SELECT create_role('Analyst');

-- create analyst user

star$administrator=# SELECT create_user('myuser');

-- alter analyst user to allow login

star$administrator=# SELECT create_user('myuser',true,'password');

-- grant analyst user query access

star$administrator=# SELECT grant_user('myuser','star$query');

-- create a new network

star$administrator=# SELECT create_network('demo','Demo network');

-- quit from administration database

\q

#connect to the demo network as administrator

josql demo star\$administrator

-- create an instance node

demo=# SELECT SELECT create_node('Instance', 'Instance node', 'I',

'52.59.208.12',null,null,null,null);

-- create an edge node

demo=# SELECT SELECT create_node('Edge', 'Edge node', 'E',

null,null,null,null,null);

-- create an area node

demo=# SELECT SELECT create_node('Area', 'Area node', 'A',

null,null,null,null,null);

-- attach nodes

demo=# SELECT attach_node('Instance', 'Edge');

demo=# SELECT attach_node('Edge', 'Area');

Edge Intelligence User Guide August 2017 70

-- check network topology is as expected

demo=# SELECT rpad(' ',depth)||name AS name, type, description FROM

star$topology('Area') ORDER BY path ASC;

 name | type | description

--------------+------+-------------

 Area | A | Area node

 Edge | E | Edge node

 Instance | I | Instance node

-- create a global temperature sensor table

demo=# SELECT create_table('sensors','sensor_id BIGINT, latitude

NUMERIC, longitude NUMERIC','G');

-- create a local temperature measurement table

demo=# SELECT create_table('temperatures','datetime TIMESTAMP,

sensor_id BIGINT, temperature FLOAT','L');

-- load the global sensor table from a sensor csv file

demo=# \! joloader demo 'sensors.csv' sensors -Ustar$administrator -

d',' -E~"select copy_rows('sensors');"

-- check the number of rows in the sensor table

demo=# SELECT count(*) FROM sensors;

 count

 1000

(1 row)

-- create a port for parsing messages of the form

{"timestamp":"20170101:120000","sensor":1093,"temp":12.3}

demo=# SELECT create_port('temperature messages','Temperature

measurements','temperatures','json','datetime,sensor_id,temperature'

,'timestamp,sensor,temp','timestamp','T','YYYYMMDD:HH24MISS.MS');

-- create a source for the temperature sensor

demo=# SELECT create_source('T:1985219','Temperature sensor');

-- attach sensor source to port and edge node

demo=# SELECT attach_source('T:1985219','temperature

messages','Edge');

-- grant analysts access to the sensor and temperature tables

star$administrator=# SELECT grant_table('sensors','Analyst');

star$administrator=# SELECT grant_table('temperatures','Analyst');

-- quit from the network database as administration user

Edge Intelligence User Guide August 2017 71

\q

#connect to the demo network as analyst user

josql demo myuser

-- set my role

demo=# SELECT set_role('Analyst');

-- open a query session for the Edge node

demo=# SELECT open_query('Edge');

-- query data from the tables

demo=# SELECT count(*) FROM temperatures t JOIN sensors s ON

s.sensor_id=t.sensor_id WHERE s.latitude=51.4545 AND s.latitude=-

2.5879;

...

-- quit from the network database

\q

Edge Intelligence User Guide August 2017 72

Known Issues
The following lists a number of known issues that will be fixed in subsequent releases.

Distribution constraints
Distribution constraints are not currently enforced.

Creating adaptor functions
Creating new adaptor functions is not currently possible.

Forthcoming Features
The following lists a number of features planned for forthcoming releases.

Bounded Schemas
This feature will allow schemas to be limited to particular nodes in the network. Bounded schemas
can be used to provide additional security where a single network is required to handle separate
data sets.

Explicit Purge Criteria
This feature will allow purging to be performed on a nominated column rather than only on the
implied transaction timestamp and will provide greater control over data retention.

