
 
 

Future Proofing Hybrid Cloud Analytics 

Overview 
This paper considers how data retained for analytical purposes in a hybrid cloud of geographically 

distributed data centres can be future proofed against evolving and unforeseen requirements. 

Such systems can evolve in a number of ways including, changing data schemas, changes to query 

patterns or changing data volumes. But any system which requires a change in architecture, change 

in design or re-location of data to cope with these variations cannot reasonably be considered as 

future proof as the incumbent system has effectively been replaced by another.  

This paper considers the aspects which promote or detract from the ability to future proof a hybrid 

cloud analytical system. 

Dynamic Schemas 
One area of change is the structure of the data itself – that is the data schema. 

A common approach to handling changes to data schemas is to avoid using a schema altogether. 

This schema-less approach is common in NoSQL and Hadoop systems where data is acquired in 

documents or files and a schema is superimposed on top of the data at query time only. Compared 

to a relational database, this makes the data less open to discovery as there is no schema to explore. 

For example, consider whether it would it be easier for a user to explore the contents of data 

presented as a relational schema or as a collection of documents of indeterminate structure. Indeed, 

the raison-d'etre for a relational schema is to make the semantics of the data transparent and 

unambiguous. Unstructured documents and files are ideal for containing unstructured data, but 

much less so for data which has structure to it.     

Machine generated data (such IoT device data) is typically structured so that a schema naturally 

applies to it. For example, machine generated JSON messages contain known paths and keys which 

naturally map to columns in a message table.     

To cope with changing schema requirements, the schema simply has to be dynamic. For example, 

with a dynamic relational schema, it is possible to add, alter or drop logical structures, such as 

tables, columns and views, instantaneously and at will. These logical structures reflect the structure 

of the data and the schema simply evolves with that structure.  

Even the most rudimentary relational databases provide dynamic schemas – but only at trivial data 

volumes*. But as volumes grow, most relational databases necessitate the use of performance 

structures such as indexing, partitioning and de-normalised tables. It is these structures which 

require design work and take time and resources to deploy; and it is these structures which make 

relational systems resistant to change – not the relational schema itself. 

 

*MySQL appears to be a notable exception here as it apparently rebuilds an entire table even when you simply 

add a column to it, so that MySQL would not be agile even at relatively small data volumes. 



 
 
Schema-less systems can still be attractive compared to a dynamic schema if that schema needs to 

be changed in multiple locations – such as in a hybrid cloud system. If each change needs to be 

implemented separately at every location, then change becomes difficult and inconsistencies are 

inevitable while each change is in progress. 

In a hybrid cloud system with a dynamic schema it becomes essential to be able to submit each 

change precisely once from a single location, with a guarantee that the schema remains universally 

consistent across all locations. Without this ability, the schema becomes resistant to change and it 

loses its dynamism. 

Performance Walls 
Performance structures like indexing, partitioning and de-normalised tables are the root of most 

performance issues – because the correct structures are missing; or because the wrong structures 

are being used; or because the correct structures are in place for particular queries, but degrade 

performance elsewhere.  

Moreover, changing these structures at large data volumes is not something done very easily. For 

example, retrospectively adding an index on a table with even just a few terabytes of data will likely 

take hours and will consume huge amounts of IO bandwidth and memory; while changing the 

partitioning key of that same data will likely take even longer.  

Hence making changes to these performance structures is not done lightly. Worse still, these design 

decisions will optimise performance in specific areas and degrade performance elsewhere (there 

really are no free lunches). Hence performance design erects performance walls where the database 

operates effectively within those walls but offers less than adequate performance outside of them; 

and it becomes increasing difficult to move those walls as the volumes grow. 

Both relational and NoSQL databases are bound by their performance walls and these walls detract 

from future proofing.  

Moreover, changes to performance structures become even more problematic in a hybrid cloud 

environment, where performance requirements will likely differ at each data centre because of 

variations in data volume and data population.     

Query Agility 
Query agility is the ability of the database to respond to arbitrary queries with good response times 

without prior knowledge or design for those queries. Again, at trivial volumes, relational databases 

readily provide this agility – but as volumes grow either response times lengthen unacceptably or 

necessitate the use of performance structures like indexing to maintain reasonable response times.  

Even without changing requirements, query agility is important for data exploration. For example, 

consider a business intelligence tool such as Tableau™. These tools will automatically fire 

summarization queries as you build your visualizations, to gather information about the data 

population. These tools will then let you aggregate across large volumes of data and subsequently 

drill down into the granular detail that lies behind any particular aggregation category. Most 

database systems fail to service both classes of queries well. For instance, column stores excel at 



 
 
aggregation queries – but perform poorly when drilling into the granular detail that lies behind an 

aggregation result. 

NoSQL systems struggle too at large volumes because they require design or hardware to yield 

decent performance. Document stores are fundamentally sub-optimal for analytical queries because 

their structure is akin to a schema-less row store; while also necessitating indexing for more 

selective queries. Meanwhile, Hadoop exerts an enormous hardware footprint for even relatively 

minor data volumes and is not without its own design dependencies – just think about the design 

choices required around file formats and partitioning.  

Table joins can be a performance killer at large data volumes and many relational and NoSQL 

systems rely on the use of de-normalized tables so that table joins can be avoided altogether. But 

relying on the avoidance of joins severely limits which queries are possible and constrains data 

exploration options. Future proofing entails enabling arbitrary queries on demand - so an inability to 

support arbitrary joins between tables clearly contradicts that requirement. 

Summary 
A future proof hybrid cloud analytical system may either be schema-less or may provide a dynamic 

schema which can vary at will and which is managed as a single globally consistent schema across all 

data centres. But dynamic schemas naturally fit structured data and are more open to data 

exploration than schema-less systems. 

Query agility at scale is also critical, simply because it is rarely possible to see around the corner to 

make all of the right design choices ahead of time; and the use of performance structures to deliver 

response times, erects performance walls which are themselves resistant to change. Performance 

structures become even more problematic in geographically distributed systems where 

requirements likely differ between data centres because of variations in data volume and data 

population. 

These requirements are very demanding and, in reality, few database solutions are able to fulfil 

them. 


