
 
 

Edge Analytics for the Industrial Internet of Things 

Overview 
This paper considers the reasons for using a highly-distributed analytical architecture in an Industrial 

Internet of Things (IIoT) context. 

A typical IIoT architecture performs event processing (CEP) and filtering near the source of data and 

ships the outcomes of event processing into the Cloud for alerting and analytical purposes. Much of 

the granular source data is lost because network bandwidth limitations make the transport of 

voluminous operational data into the Cloud impractical. 

However, this architecture is reminiscent of a legacy data warehouse system where operational 

systems feed a limited synopsis of operational activities into a central warehouse and the partial 

view of the operation history ultimately limits the analytics possible in the future. 

Contemporary analytical systems take an approach whereby the granular operation detail is retained 

in an exhaustive long-term data lake to allow arbitrary exploration and analysis of any aspect of 

operations now and in the future. This is especially relevant when business environments are 

dynamic, and it is not possible to predict which queries/responses will deliver the greatest insight.    

A data lake provides the retention of everything and affords the analysis of anything. The potential 

value of any given datum remains unknown until some point in the future and that value might only 

be realised when combined with other data and a data lake affords the time and data capacity to 

fully realise that potential. 

There is also some dissonance between the current architecture for IIoT analytics and contemporary 

wisdom which promotes pushing the analytical processing to the data rather than moving data to an 

analytical engine. The reasoning for moving processing to the data partly arises from the limitations 

of network bandwidth which presents a barrier to volume scaling; and in a wide geographically 

distributed network, those limitations become even more evident.   

Edge Storage 
Storing and analysing operational data at the edge of the network affords a number of advantages 

over a solely centralised Cloud analytical approach.  

Firstly, leaving the data at the edge avoids the bandwidth limitations of geographically distributed 

networks and obviates any need to filter out granular operational detail. Filtering data forces 

premature decisions about which data is shipped and which is discarded and those decisions are 

inevitably based on incomplete information about the potential value of the data being discarded. 

Whereas, collecting and retaining data at the edge allows everything to be retained for potential 

analysis at some point in the future. 

Even with an architecture of filtering and shipping data to a central Cloud, there is still a requirement 

to store and forward data when network connectivity fails and data cannot be immediately 

transported away from an edge point - so retaining data at the edge indefinitely can be viewed as an 

extension of an existing store and forward requirement. 



 
 

Cloudlets 
An architecture where compute resources are located close to mobile devices to overcome network 

latency and jitter for compute intensive mobile interactions has been proposed for mobile 

communications networks (http://research.microsoft.com/en-

us/um/people/bahl/Papers/Pdf/cloudlets09.pdf). These compute resources are distributed around 

the network, are stateless and provide compute services on demand to mobile devices located 

nearby.  In this architecture, these local resource centres are called Cloudlets. 

It is reasonable to extend this architecture to include data storage in the Cloudlet, especially as 

Cloudlet services are likely to produce voluminous operational data from their activities which 

presents a useful source for analytics.  

When used in an IIoT context, these Cloudlets would sit between the device gateways and the Cloud 

and operate as data storage hubs to nearby gateways. In this architecture, CEP continues to operate 

in the device gateways, but instead of discarding the operational detail that has been processed, the 

detail is passed through to its nearby Cloudlet. 

With the operational data retained within the Cloudlets, analytical processing is pushed from the 

Cloud down to the Cloudlets and their results aggregated in the Cloud. This offers a number of 

benefits for analytical queries: 

 Cloudlets provide a distributed comprehensive data lake for arbitrary data exploration and 

analysis.  

 Analytical processing can be pushed into the Cloudlets to bring the analytical processing 

closer to the data while avoiding the transport of large amounts of data over geographically 

distributed networks. 

 Analytical processing pushed into a Cloudlet can exploit the resources available in the 

Cloudlet and queries can operate in parallel across multiple Cloudlets. 

 Cloudlets can provide high-availability for data collection and queries by replicating data 

between neighbouring Cloudlets. Queries can operate in parallel across the available 

Cloudlets at the time of the query and can load balance between Cloudlets that contain 

common data. 

 

Moreover, CEP can also operate in the Cloudlet to provide real-time alerts to anomalous conditions 

that might arise in the context of multiple gateways. 

This is not to say that data should never pass beyond a Cloudlet into a Cloud, but rather that a hybrid 

architecture overcomes the limitations of pushing everything into the Cloud and makes a 

comprehensive data lake readily feasible. 

For the purposes of this paper, we will expand the use of the term Cloudlet beyond just mobile 

networks to that described above.    

Distributed Queries 
The majority of analytical queries are likely to be submitted from the Cloud and may address one, 

many or all of the Cloudlets in the network. Performing a query across multiple Cloudlets requires 

the query to be disseminated and distributed across all of the Cloudlets with the heavy lifting pushed 
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down into the Cloudlets to avoid excessive data transport back to the point of query. This involves 

performing the majority of the predicate filtering, join, aggregation, grouping and ordering 

processing within the Cloudlets and merging their results into a combined result.  

In the context of a relational query against structured data, distributing the query processing 

involves well understood techniques provided that: 

 A common schema is applied in every Cloudlet. 

 Universal data which is not specific to any particular Cloudlet is replicated across all Cloudlets. 

 

The former requirement is a natural extension from using a single schema in the Cloud; while the 

latter dictates certain aspects of how data must be distributed and/or replicated across Cloudlets.   

Where queries are distributed across Cloudlets, they can be submitted and executed in parallel to 

minimise overall query execution time. Where common data exists in more than one Cloudlet, the 

currently available Cloudlets can be chosen at query time to provide high-availability; and where one 

Cloudlet is required from a choice of multiple currently available Cloudlets, that choice can be 

random or based on current Cloudlet utilisation to offer load-balancing across them. 

Orchestration 
The orchestration of operational activities becomes more complex with geographically distributed 

Cloudlets, largely because of the requirement to guarantee the roll-out of changes across a high-

latency low-bandwidth network which is likely to suffer partial loss of connectivity at any time. 

An essential user requirement for managing a complex system is the provision of a single pane of 

glass management console which provides a unified view of the system as a whole. Operational 

changes need to be instructed precisely once and fulfilled in an autonomous and asynchronous 

manner across the network of Cloudlets. 

This requires a Reference Source in the Cloud which immediately evaluates every request and 

journals the fulfilment instructions to be propagated out to every Cloudlet as and when there are 

available. The Reference Source must be distributed across multiple servers and employ quorum 

semantics with transactional atomicity and durability to guarantee availability and immediate 

consistency within the Reference Source itself.  

Meanwhile, eventual consistency has to be applied to every Cloudlet to mitigate against connectivity 

and hardware failures. Whenever a Cloudlet has visibility of the Reference Source it is required to 

synchronize its state with that of the Reference Source – which is always consistent. 

Autonomy 
Many database systems rely on either human design effort and/or require large amounts of 

hardware resource to achieve performance. The challenge for Cloudlets is that neither of these will 

be available near the edge of the network. To put this is some context, it is reasonable to expect 

each Cloudlet to be storing tens to hundreds of terabytes of operational data. 

Cloudlets must run autonomously without requiring regular maintenance, capacity planning, tuning 

or optimization to reach performance requirements. This autonomy is especially important as 



 
 
Cloudlets will vary in both data volume and data distribution and it is not reasonable to expect each 

Cloudlet to be managed individually.  

Moreover, if the virtues of the data lake are to be fully realised, then the analytical queries 

submitted will be unknown and varied and Cloudlets will be required to serve them in a responsive 

manner. This becomes even more essential for Cloudlets operating at the edge for many years as 

requirements inevitably change over time. 

Autonomy is also an important virtue for a distributed query strategy, as it permits the bulk of the 

heavy lifting processing to be pushed out to the edge of the network. Without autonomy, limitations 

have to be placed on what workload can be pushed out and concerns arise over the ability of all of 

the Cloudlets to respond quickly; and the overall query response time will be largely dictated by the 

slowest Cloudlet.    

Security 
Cloudlets will operate in an industrial and potentially hostile environment.  The data hosted in each 

Cloudlet must be held securely despite operating outside the conventional secure environment of a 

Cloud data centre. 

A number of specific security points arise out of this: 

 Direct query access to a Cloudlet store from resources external to the network must be 

prohibited. 

 Data transported over networks from gateways to Cloudlets and from Cloudlets to the Cloud 

must be encrypted during transit. 

 Ideally, data at rest in the Cloudlet is also encrypted to guard against hardware theft and 

physical intrusion into the Cloudlet. 

 

In addition to protection from external parties, the visibility of data to queries should be managed in 

a framework of roles and privileges to guard against accidental exposure of sensitive data to 

legitimate users. 

Summary 
An architecture of widely distributed storage Cloudlets brings the analytical virtues of a data lake to 

the IIoT. Indeed, the architecture can be viewed as a distributed data lake which offers numerous 

benefits to IIoT and beyond.  

But some essential qualities are required to implement a distributed data lake effectively:  

 Cloudlets must be able to operate autonomously. 

 The population of Cloudlets must be orchestrated and queried centrally as though operating 

within a Cloud data centre. 

 The deployment of Cloudlets outside of secure Cloud data centres places critical security 

demands on the systems operating within the Cloudlets.  

 

 


